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Abstract. There has been a quickly growing interest in properties of complex networks, such as the small
world property, power-law degree distribution, network transitivity, and community structure, which seem
to be common to many real world networks. In this study, we consider the community property which
is also found in many real networks. Based on the diffusion kernels of networks, a hierarchical clustering
approach is proposed to uncover the community structure of different extent of complex networks. We test
the method on some networks with known community structures and find that it can detect significant
community structure in these networks. Comparison with related methods shows the effectiveness of the
method.

PACS. 89.75.Hc Networks and genealogical trees – 89.65.-s Social and economic systems – 05.10.-a Com-
putational methods in statistical physics and nonlinear dynamics

1 Introduction

Since diverse systems in various fields take the form of
networks, a number of recent studies have focused on sev-
eral distinctive statistical properties of networks such as
the small world property [1,2], the right-skewed degree
distribution [3–5], the clustering or network transitivity
property [6], the community structure [7,13] and so on. In
this study, we proposed a simple approach to depict the
community structure which is shared by many network
systems.

Recently, modular organization of complex networks,
as a basic feature for many real networks, has attracted
special attention of researchers in diverse fields such as so-
cial networks [14,15], technological networks [16], and bio-
logical networks [17,18,21,22], etc. For example, many bi-
ological networks appear to be organized into community
(modularity) structure that are densely connected within
themselves but sparsely connected with the rest of the net-
work. A large number of methods have been developed for
this problem, such as the edge-betweenness algorithm [7],
EO-based algorithm [8], and so on. More methods can be
seen in a recent review article [9] and an evaluation pa-
per [10]. The ‘fuzzy’ community structure also has been
studied [11,12] recently. Many existing methods only take
account of local information of each node, such as number
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of nearest neighbors shared with other nodes. Hierarchi-
cal clustering method based on similarity measurement
between pairs of nodes according to the network struc-
ture as proposed in [17,24,23] is a direct and visualizing
approach which detects community structure in network.

In addition, biological network tends to form a hierar-
chical structure, in which nodes are organized into small
modules which are, in turn, organized into larger mod-
ules, and so on [17]. Hierarchical organization in com-
plex networks is a key theoretical model which captures
the statistical characteristics of a large amount of real
networks such as metabolic networks [17,18], social net-
works [14,15]. Obviously, how to uncover the hierarchi-
cal structure in a network is a key, but nontrivial prob-
lem. Rarasz et al. (2002) remarked that conventional net-
work clustering methods are unable to uncover the hier-
archical structure in such networks. They have proposed
a hierarchical clustering method to identify hierarchical
modularity in metabolic network based on a so-called
topological overlap matrix. In papers [19,20], the authors
defined two distance measures based on network random
walks respectively to partition the vertices into communi-
ties hierarchically.

As we know, until now, there is no a definite def-
inition of the community structure. A subnet detected
as a community by a constrained community-detection
method may be only a part of a large community detected
by another relaxed method. Giving out communities of
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networks of different extent can enhance the insight into
organization of complex networks.

In recent years, kernel method is becoming a popular
tool in many fields including bioinformatics. Kernel func-
tion defines similarities between pairs of nodes and yields
a symmetric, positive semidefinite matrix K known as the
kernel matrix. Such similarities describe relationships that
are implicit in the data and make them explicit. In order
to decipher the topological link relationship of graph data,
some graph kernels have been developed [25]. Recently, a
novel graph kernel called diffusion kernel has been com-
prehensively used in many aspects such as data integra-
tion [26]. Naturally, it can be used as a similarity metric
for hierarchical clustering and further detecting commu-
nity structure in complex networks. A distinguished merit
of this method is that it can control the degree of similar-
ity based on the diffusion degree.

Here, we propose a simple hierarchical clustering
method based on the concept of diffusion kernel of net-
works to uncover the community structure of complex
networks. Applying this method to several artificial and
real networks show the effectiveness of this method. Com-
munities of different extent (relaxed or constrained) in a
network enrich the understanding about the inherent
structure of networks. Comparison shows some special ad-
vantages of the present method over the related methods.

2 Graph kernels and similarity index

A key factor of hierarchical clustering is the choice of dis-
similarity metric (or similarity metric). For a network, it
is a hard problem. A proper similarity measure Sij for ev-
ery pair of nodes i and j in a network should represent
how closely connected the nodes are. Since two closely
connected nodes would be in a close hierarchical level.
Recently, Kondor et al. (2002) proposed a concept of dif-
fusion kernel which implicitly captures the connecting re-
lationship of nodes.

Given an undirected, unweighted graph (network) G =
(V, E). The (opposite) Laplacian of this network is the
matrix:

Lij =

⎧
⎨

⎩

1, for i ∼ j
−di, for i = j
0, otherwise

(1)

where i ∼ j means that the ith and j th nodes are con-
nected by an edge on the network, and di is the degree of
the node. The exponential of the matrix L is defined as:

Kβ ≡ exp(βL) = lim
n→∞

(

I +
βL

n

)n

(2)

where β is a positive constant to control the degree of
diffusion. And the limit always exists and is equivalent to
the following expansion:

exp(βL) = I + βL +
β2

2
L2 +

β3

3!
L3 + · · · (3)

The resulting matrix Kβ is symmetric and positive def-
inite. It is therefore a valid kernel, which captures the

long-range relationship between nodes induced by the lo-
cal structure of the network. How should we compute the
matrix exponential? As a matter of fact, many algorithms
have been developed for this problem [27]. For example,
the Padé approximation with scaling and squaring has
been used to compute the matrix exponential in Matlab
soft [28]. By normalizing the kernel matrix Kβ, the simi-
larity matrix Sβ can be defined as:

Sβ
ij =

Kβ
ij

√

Kβ
iiK

β
jj

. (4)

We note that the diffusion parameter β plays a key role
in detecting community structure of different extent. Why
does it runs? Thinking of diffusion kernel K in terms of ac-
tual physical process of diffusion can give some intuitional
explanation. The parameter β of K is to control the extent
of the diffusion, or to specify the length scale, which is sim-

ilar to σ in the Gaussian kernel e
−‖xi−xj‖2

2σ2 [29]. The au-
thors of reference [26] has suggested that diffusion kernel
has closely relationship to random walk. A lazy random
walk on an unweighted graph G is a stochastic process
which generates sequences z0, z1, z2, ..., where zl ∈ V in
such a way that p(zl+1 = j|zl = i) = β0 (β0 is a con-
stant and β0 ≤ 1/ maxi di) if i ∼ j and zero otherwise,
and remains in place with probability 1− diβ. Obviously,
the limit distribution P = limN→∞ p(zN |z0) equals to
limN→∞(I + β0L)N . Let N = 1/∆t and β0 = β∆t, we
can easily obtain that the continuous time limit of lazy
random walks are exactly the diffusion kernels. In a recent
study, Zhou [19] has already given a dissimilarity measure
based on network random walk in a very different manner.
We should also note that the flexibility from the choice of
β may mean a shortcoming at the same time. How should
we determine an appropriate β for a large network? We
suggest that two criteria used in [30] are adopted just
as shown in part IV. B. 4. the yeast protein interaction
network. Experientially, the β is not sensitive to the two
criteria. So we can only test several β to choose an ap-
propriate β value. This will not increase the complexity of
the algorithm.

3 Hierarchical clustering based on diffusion
kernel (DK)

The normalized diffusion kernel can be used as a sim-
ilarity index to decipher the community structure of a
network. Generally, hierarchical clustering as a standard
clustering technique can be used to cluster a network
with a given similarity index. Starting from N clusters
consisting of single node, the two closest ones are it-
eratively joined together. Three different criteria called
‘single-linkage clustering’ (SL), ‘complete linkage cluster-
ing’ (CL) and ‘average-linkage clustering’ (AL) can be em-
ployed to define cluster-to-cluster dissimilariy (see Fig. 1).
Although these criteria have been broadly studied, none of
them can be proved to be always more efficient than the
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Fig. 1. The illustration of three cluster-to-cluster dissimilarity
criteria. X and Y are two clusters and NX , NY are the sizes of
these two clusters. d(x, y) is distance of x ∈ X and y ∈ Y .

others. Taking into account the tendency to cluster the
nodes together at a relatively low level and at a relatively
high level for ‘single-linkage clustering’ and ‘complete link-
age clustering’ respectively, we employ the compromising
‘average-linkage clustering’ in this study.

The output of hierarchical clustering can be depicted
by a hierarchical tree or dendrogram. The whole procedure
could be easily implemented with Fortran programming
language. The hierarchical tree was displayed using Tree-
View [31] (http://rana.lbl.gov/EisenSoftware.htm).
And if there no special mentions, the height of node of
a hierarchical tree represents the similarity between two
branches under the node in our paper.

4 Experiments and comparative analysis

We test the simple method by applying it to three kinds of
artificial networks and to four real-world networks. Com-
parison with the known ‘edge-betweenness’ algorithm [7],
the method proposed by [19] and other hierarchical clus-
tering methods shows the effectiveness of our method.

4.1 Artificial networks

4.1.1 The Cayley-tree network

We first take a Cayley-tree network whose hierarchical
structure is distinct as an example. Figure 2 illustrates the
network and its tree-like plot by our method. We can see
that the basic community structure and hierarchy struc-
ture are clear. The network can be divided into three parts
at a high level. Furthermore, each of the three parts is fur-
ther divided into three subparts.

4.1.2 The model hierarchy network

We apply the method to the model hierarchy network pro-
posed by Ravasz et al. [17]. Such network can be con-
structed by a repeated replication and connection pro-
cess from a four clique (Detailed information can be

Fig. 2. The Cayley tree network and its hierarchical trees with
β = 0.3.

Fig. 3. A model hierarchy network obtained from [19].

seen in [17]). Figure 3 shows such a network at level 2.
As Ravasz et al. pointed, conventional network cluster-
ing methods are hard to uncover hierarchical community
structure of such a network. The simple network method
presented here makes a good performance. The global hi-
erarchy organization of the nodes in the network has well
reflection. Figure 4 demonstrates the community structure
of the network in Figure 3 with β = 3.
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Fig. 4. The hierarchical trees of hierarchy network in Figure 3
with β = 3.

4.1.3 Computer-generated networks

The present method is applied to a large set of artifi-
cial modular networks to compare with edge-betweenness
algorithm [7]. In this test, each network has 128 nodes,
which are divided into 4 communities of size 32 each.
Edges are placed randomly with two fixed expectation
values so as to keep the average degree of a node to be
16 and the average zout of each node’s edges connecting
to nodes of other modules. The experiment designed by
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Fig. 5. The fraction of nodes correctly classified in computer-
generated networks with respect to zout. Each point is an av-
erage over 100 realization of the networks.

Girvan and Newman [7] has been broadly used to test
community-detection algorithms [7,32].

The proposed method can uncover the community
structure well. Figure 5 shows the fraction of nodes that
are classified into their correct communities with respect
to zout by our method with β = 0.1 and the edge-
betweenness algorithm respectively. The present method
has better performance than edge-betweenness algorithm.
For instance, when worked on 100 random networks with
zout = 7 by the present method, on an average 84.7%
nodes are classified correctly, while only about 61.9%
nodes by the edge-betweenness algorithm.

4.2 Real-world networks

4.2.1 The karate club network

The famous karate club network analyzed by Zachary [33]
is widely used as a test example for methods of detecting
communities in complex networks [7,9,13,32,34]. The net-
work consists of 34 members of a karate club as nodes and
78 edges representing friendship between members of the
club which was observed over a period of two years. Due
to a disagreement between the club’s administrator and
the club’s instructor, the club split into two smaller ones.
The question we concern is that if we can uncover the
potential behavior of the network, detect the two commu-
nities or multiple groups, and particularly identify which
community a node belongs to. Figure 6A shows the net-
work, and Figures 6B and 6C show the hierarchical tree of
communities produced by the edge-betweenness algorithm
and our method with β = 0.1, respectively. Two methods
both divide the network into two groups of roughly equal
size at the top of the tree. Both methods produce almost
consistent split with actual division of original club. And
only one node, node 3 in Figure 6B and node 10 in Fig-
ure 6C respectively, is classified incorrectly. This indicates
that the application of our direct hierarchical clustering
method to the empirically observed network can uncover
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Fig. 6. (A) The karate club network from Zachary’s study
as described in the text (obtained from [9]). (B) (obtained
from [7]) and (C) show the hierarchical trees by the edge-
betweenness algorithm and our method with β = 0.1 respec-
tively.

its roughly real hierarchy. But there exist more strongly
connected subnets which are not detected well. Figure 7
shows two hierarchical trees, in which the left one is for
our method with β = 3 and the right one is for method of
Zhou [19] respectively. We can find several strongly con-
nected subnets such as the one consisting of nodes 5, 6, 7,
11, 17. Specifically, the main three parts of the two plots
in Figure 7 are quite consistent with each other except
node 12.

4.2.2 The football team network

The second real network we have investigated is the col-
lege football network which represents the game schedule
of the 2000 season of Divison I of the US college foot-
ball league. The nodes in the network represent the 115
teams, while the links represent 613 games played in the
course of the year. The teams are divided into confer-
ences of 8–12 teams each and generally games are more
frequent between members of the same conference than
between teams of different conferences. The natural com-
munity structure in the network makes it a commonly
used workbench for community-detecting algorithm test-
ing [7,19,32].
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Fig. 7. The hierarchical structure of the karate club network
obtained form the present method with β = 3 (the left one)
and method developed by Zhou [19] (the right one which is
obtained from [19]).

Figure 8 shows the community structure of the foot-
ball team network calculated by using the present method
(the left one) and obtained from [19] (the right one). The
communities detected by both methods show well consis-
tent with the nodes’ group-identity. Because there are few
edges between five members of the community labeled 12,
these five nodes are distributed to other communities such
as node 91 or deposited as relatively isolated node such
as nodes 37 and 43. And the remainders of community
12 (nodes 81 and 83) joint together with community 8
at a high level. We should note that nodes including 37,
43, 81 and 83 may mean a unstable case in which these
nodes only have weakly connecting relationship with any
community. Nodes 59 and 111 are classified to inconsis-
tent communities respectively for stronger link with cur-
rent communities than the labeled ones. The hierarchical
structure of our method seems to suggest a more precise
organization than its original conferences.

4.2.3 The scientific collaboration network

The scientific collaboration network collected by Girvan
and Newman [7] and examined in [7,32] is also tested
here. This network is a weighted network which consists
of 118 nodes (scientists). The proposed method gives out
distinct community structure of different degree shown in
Figure 9. The network can be divided into three giant com-
munities, and small communities can further be detected
just as method of Zhou [19] did.
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Fig. 8. The hierarchical structure of football team network
obtained by our method with β = 0.5 (the left one) and the
method prosed by Zhou [19] (the right one which is obtained
from [19]).

4.2.4 The yeast protein interaction network

A large-scale yeast nonredundant (no self-interaction and
repeated interaction) protein interaction data is obtained
from [30] to construct a yeast protein interaction network
which contains 4537 proteins (nodes) and 13344 interac-
tions (edges). We apply the simple clustering method to
this large sparse network. Many communities can be ob-
tained. Its biological significance also can be evaluated
based on known function annotation and protein com-
plexes in MIPS [35].

In order to illustrate the advantages of the present
method (called DK), we compared it with previously re-
ported hierarchical methods based on different similarity
measures including R [23], B [24], Ra [17]. Two criteria
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Fig. 9. The hierarchical trees of scientific collaboration net-
work obtained by our method with β = 3 (the left one) and the
method proposed by Zhou [19] (the right one which is obtained
from [19]).

suggested in [30] are used to compare these methods. The
first is to test how well the link information is retained
in the dendrogram by computing the distribution of the
shortest path in the tree between linked nodes. The sec-
ond is to test how the nonzero entries in the adjacency
matrix is ordered according to the hierarchical tree close
to the diagonal of the matrix by computing the number
of linked pairs in the selected area. Figures 10A and 10B
show the shortest path distributions of linked nodes of
the four trees and the number of linked pairs in selected
area. We can see that the diffusion kernel-based method
always shows better results than the others. These two
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Fig. 10. (A) Distribution of interacting proteins according to
the shortest path between them in the hierarchical tree with
β = 0.3. (B) Distribution of protein interactions according to
the selected area in the ordered adjacency matrix based on
hierarchical tree with β = 0.3.

criteria can also be used as measures to choose appropri-
ate β visually. In other words, we can compute these two
distributions of diffusion kernels with an array of β values
to choose a ‘good’ β value.

5 Conclusion and discussion

Graph kernel as an implicit similarity index provide an
important relationship-depicting method which has been
broadly applied to various fields such as bioinformatics.
In this study, based upon diffusion kernels of networks
we propose a hierarchical clustering method to uncover
the community structure of complex networks. The hi-
erarchical clustering method based on the kernel matrix
is similar with traditional hierarchical clustering methods
used in network clustering, but it is more flexible with the
parameter β which controls the degree of diffusion and
further controls the extent of communities. We apply this
method to three artificial networks and four real networks
in social and biological fields. The experiments show very
satisfactory results. Comparison with other related meth-
ods shows the effectiveness of the present method. The dif-
ferent extent of communities provides enrich insights into

network systems with diffusion parameter β just as the
analysis on karate club network suggested. For very large
networks, an appropriate β can be given out according
to the criteria used in the analysis of protein interaction
network.

Since diffusion kernels of unweighted networks can be
generalized to weighted networks, we believe that our
analysis can also be extended to weighted complex net-
works just as the test on the scientific collaboration net-
work shown above. It is expected that the idea and ap-
proach presented here will be proved useful in the analysis
of various types of complex networks.
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matics”, National Natural Science Foundation of China under
Grant No. 10631070. The authors thank Professor M.E.J. New-
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